An efficient method for parametric yield gradient estimation

نویسندگان

  • Ting Wu
  • Say Wei Foo
چکیده

A novel method to improve the yield gradient estimation in parametric yield optimization is proposed. By introducing some deterministic information into the conventional Monte Carlo method and fully utilizing the samples, it is possible to obtain yield gradient estimation with significantly smaller variance. The additional computation is almost negligible. Examples are presented to indicate the efficiency of this approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Joint DOA Estimation and Array Calibration Using Multiple Parametric Dictionary Learning

This letter proposes a multiple parametric dictionary learning algorithm for direction of arrival (DOA) estimation in presence of array gain-phase error and mutual coupling. It jointly solves both the DOA estimation and array imperfection problems to yield a robust DOA estimation in presence of array imperfection errors and off-grid. In the proposed method, a multiple parametric dictionary lear...

متن کامل

Gate delay variability estimation method for parametric yield improvement in nanometer CMOS technology

In digital CMOS circuits, parametric yield improvement may be achieved by reducing the variability of performance and power consumption of individual cell instances. Such improvement of variation robustness can be attained by evaluating parameter variation impact at gate level. Statistical characterization of logic gates are usually obtained by computationally expensive electrical simulations. ...

متن کامل

An Efficient Conjugate Gradient Algorithm for Unconstrained Optimization Problems

In this paper, an efficient conjugate gradient method for unconstrained optimization is introduced. Parameters of the method are obtained by solving an optimization problem, and using a variant of the modified secant condition. The new conjugate gradient parameter benefits from function information as well as gradient information in each iteration. The proposed method has global convergence und...

متن کامل

Fast kernel entropy estimation and optimization

Differential entropy is a quantity used in many signal processing problems. Often we need to calculate not only the entropy itself, but also its gradient with respect to various variables, for efficient optimization, sensitivity analysis, etc. Entropy estimation can be based on an estimate of the probability density function, which is computationally costly if done naively. Some prior algorithm...

متن کامل

A Region-based Algorithm for Image Segmentation and Parametric Motion Estimation*

This paper describes an approach for integrating region-based motion estimation and region merging techniques with the purpose of obtaining precise parametric motion description and image segmentation. Segmentation is achieved with a region merging scheme based initially on color homogeneity and extended to include motion parameters in successive steps. Motion vectors are first estimated with a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999